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Abstract

This paper introduces an algorithm inspired from the work of Franceschi et al. (2017) for
automatically tuning the learning rate while training neural networks. We formalize this
problem as minimizing a given performance metric (e.g. validation error) at a future epoch
using its “hyper-gradient” with respect to the learning rate at the current iteration. Such a
hyper-gradient is difficult to estimate and we discuss how approximations and Hessian-vector
products allow us to develop a Real-Time method for Hyper-Parameter Optimization
(RT-HPO). We present a comparison between RT-HPO and other popular HPO techniques
and show that our approach performs better in terms of the final accuracy of the trained
model. Online adaptation of the learning introduces two extra hyper-parameters, the initial
value of the learning rate and the hyper-learning rate; our empirical results demonstrate
that the accuracy obtained by RT-HPO is largely insensitive to these hyper-parameters.
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1. Introduction

This paper considers the problem of Hyper-Parameter Optimization (HPO). It exploits
the observation that for some hyper-parameters like learning rate, momentum and weight
averaging, one can take the gradient of a performance metric. In contrast, other hyper-
parameters like convolutional and pooling kernel sizes, dropout probability, batch-size etc.
cannot be adapted easily during training. We focus on the former and discuss gradient-based
HPO techniques using the learning rate as the prototypical example. Our method involves
taking the derivative of a performance metric, say the validation error, at a future epoch
with respect to the learning rate; we call this the “hyper-gradient”. A secondary optimization
routine updates the learning rate using this hyper-gradient.

We discuss a general formulation that encapsulates known heuristics for adapting the
learning rate in HPO. In general, the hyper-gradient is difficult to estimate: (i) the per-
formance metric can be sensitive to small changes and (ii) computing the hyper-gradient
involves back-propagation through time which is sensitive to vanishing or exploding gradients.
We construct approximations to enable us to perform gradient-based HPO in practice. Our
experiments on medium-scale image classification problems (e.g. CIFAR-100) demonstrate
that gradient-based HPO is a promising technique and can outperform a fixed exponentially
decaying learning rate strategy or other adaptive methods like AdaDelta.
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2. Related Work

Grid-based hyper-parameter search quickly becomes prohibitive as the number of hyper-
parameters grows (Bergstra and Bengio, 2012) and even random search may perform better.
Model-based approaches like Bayesian Optimization (BO) (Hutter et al., 2011; Snoek et al.,
2012; Perrone et al., 2017) have recently shown improved performance compared to random
and grid search by fitting a function approximator to estimate the performance. These
techniques are typically sensitive to the choice of the function class and do not work well for
discrete hyper-parameters. A complementary approach to HPO is papers like Hyperband (Li
et al., 2018) which uses multi-arm bandit theory to discard less-promising configurations and
allocate more resources to the promising ones (Jamieson and Talwalkar, 2016).

Adaptively selecting the learning rate has been well-studied in the context of optimization
algorithms (Duchi et al., 2011; Zeiler, 2012; Kingma and Ba, 2015). These algorithms
are extremely popular in practice but still require the user to pick the learning rate and
an annealing schedule for it. Let us note that there are effective and popular heuristics
for learning rate tuning, e.g., Smith (2017); Loshchilov and Hutter (2017). Our approach
tunes the learning rate schedule using gradients and can be used in conjunction with these
algorithms.

Our method is closely related to gradient-based HPO methods of (Baydin et al., 2018;
Franceschi et al., 2017; Domke, 2012; Maclaurin et al., 2015; Pedregosa, 2016; Franceschi et al.,
2018). These methods update fixed hyper-parameters such as regularization co-efficients using
the hyper-gradient of the performance metric. This paper uses similar ideas, discussed further
in Section 3, to adapt hyper-parameters that change with time. For the case of learning rate,
we can make approximations that allow us to efficiently compute the hyper-gradient.

3. Approach

We will work in the standard supervised learning setting. Let the dataset be X which consists
of samples and their ground-truth labels. We will denote the training data by Xtrain and the
validation data by Xval. Let w ∈ RN denote the weights of our model. Stochastic Gradient
Descent (SGD) (Robbins and Monro, 1951) is a first-order gradient-based optimization
procedure, it can be written as wt+1 = wt − ηt ∇`(wt; bt).

Here wt are the parameters at tth iteration, ηt is the learning rate, `(wt; bt) is the loss on
the mini-batch bt ⊂ Xtrain for the parameters wt. The mini-batch bt is chosen by sampling a
few instances from the training data Xtrain without replacement. We will denote the training
loss over the entire training dataset as `(wt; Xtrain). The sequence of updates converges to a
local minimizer of the training loss. If the loss function ` is convex in the parameters wt we
obtain convergence to a global minimum. We will occasionally write η(t) instead of ηt to
think of the learning rate schedule as a function of the training iterations.

For the purposes of HPO, let us define an energy E(wt) which we would like to minimize.
This is often taken to the validation loss E(wt) = `(wt; Xval), but it can also be some other
performance metric, e.g., the Bayesian Information Criterion (BIC), or the training error
`(wt;Xtrain) itself. Our formulation only requires that E(wt) be differentiable with respect
to the parameters wt. The optimization problem that we would like to solve for tuning the
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learning rate ηt can then be formally written as follows:

minimize
η1,...,ηT−1

E(wT )

such that wt+1 = wt − ηt ∇`(wt; bt) ∀ t = 0, . . . , T − 1

w0 = w, η0 = η (initial weights and initial learning rate).

(1)

In other words, we would like to minimize the energy E(wT ) at some terminal time T while
performing stochastic gradient descent updates on the parameters wt to minimize the training
loss `(wt; bt). The variables in the above optimization problem are the learning rate at
iteration η1, . . . , ηT−1. The weights wt are only controlled indirectly through the SGD update
in the constraint in (1). An oracle for solving the above problem would find the learning
rate schedule η(·) that achieves the smallest value of the performance metric E(wT ) in the
budget of T iterations. Roughly speaking, the oracle adapts the step-size in SGD such that
updates to wt that lead to a good performance at time T are bolstered.

3.1 Real-Time Hyper-Parameter Optimization (RT-HPO)

Figure 1: A toy-example of the solution
to (1) using the two-dimensional Rosenbrock
function (Rosenbrock, 1960) (left). For the
same initial condition, gradient descent with
decaying learning rate of 1/t converges to
a sub-optimal value. The solution of (1)
reaches the global optimum [1, 1] in 4 steps.

This section introduces the Real-Time Hyper-
Parameter Optimization (RT-HPO) algorithm that
approximates the solution of Problem (1). It will
be helpful to rewrite the weight update as wt+1 =
wt − ηt∇`(wt; bt) =: Φ(wt, ηt).

We have made the dependency on the mini-batch
bt implicit. The mapping Φ(wt, ηt) is defined above for
SGD but in principle it can be any update procedure,
e.g. SGD with momentum (Qian, 1999), that updates
the weights. In that case, we also need to maintain
a state variable, the momentum vector, and take the
gradient with respect to it. This is a natural extension
to the computation in this section.

Approximation 1 (Sequence of optimization
problems). We approximate (1) as a sequence of
optimization problems whereby at each iteration t, we
update the current learning rate ηt using information from the past and the gradient of the
future trajectory. We have practical motivations for such an approximation. First, instead
of solving for the optimal learning rate schedule which requires solving (1) directly, we can
exploit the causal structure of the modified problem above to change ηt in real-time. Second,
automatic differentiation techniques allow us to compute the gradient ∂E(wT )

∂ηt
efficiently.

We now exploit the above observation to set up a gradient descent scheme for updating
ηt as

ηt+1 = ηt + β∆ηt. (2)

The parameter β is called the “hyper-learning rate” and is a hyper-parameter of our approach;
this will be discussed in detail shortly. The change in learning rate −∆ηt is the hyper-
gradient and (2) therefore corresponds to gradient descent on the hyper-parameter η using
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the hyper-gradient. The following development mirrors that of Franceschi et al. (2017) and
will exploit the chain-rule to compute the hyper-gradient. Consider

dE(wT )

dηt
= ∇E(wT )

dwT
dηt

; (3)

the second term refers to the total derivative of the weights at time T with respect to the
learning rate at time t. We can now use the chain rule to get

dwt+1

dηt
=
∂Φ(wt, ηt)

∂wt︸ ︷︷ ︸
:=At

dwt
dηt︸︷︷︸
:=zt

+
∂Φ(wt, ηt)

∂ηt︸ ︷︷ ︸
:=Bt

;

which is a linear recursion zt+1 = Atzt +Bt for all t ∈ {1, . . . , T − 1}. The gradient of the
objective with respect to the current learning rate is now written as

dE(wT )

dηt
= ∇E(wT ) zT = ∇E(wT ) (AT−1zT−1 +BT−1) = ∇E(wT )

T−1∑
t=1

(
T−1∏
s=t+1

As

)
Bt. (4)

Let us make a few observations. First, the gradient can be computed recursively. Second, the
hyper-gradient at time t depends on both the past trajectory and the future trajectory. This
makes the hyper-gradient very difficult to compute since we would need to know the optimal
learning rate in the future ηs to compute the terms zs for s > t. We make the following
approximation to alleviate this.

Approximation 2 (Hyper-gradient does not depend on the future). We will replace
the exact gradient of the sequential HPO problem in (4) by

dE(wT )

dηt
:= ∇E(wt)

t−1∑
s=1

(
t−1∏

u=s+1

Au

)
Bs. (5)

We replaced the future gradient ∇E(wT ) by the gradient of the validation loss on the current
weights ∇E(wt). Further, we cull the summation up to the current time t. This is a bold
approximation because it entails that the hyper-gradient does not give us any information of
the future trajectory. Note however that the hyper-gradient is not a statistic of the entire
past trajectory up to time t. Our experiments show that in spite of this, the hyper-gradient
is an effective way to adapt the learning rate.

Computational complexity. In the update rule for zt, the first term Atzt contains a
Hessian-vector product At zt = (1− ηt∇2`(wt; ·)) zt = zt − ηt∇2`(wt; ·) zt. The Hessian is
a matrix of N ×N elements (where N is the number of the weights) and computing this
term therefore requires the second order derivative of all the operators in the architecture.
This complex multiplication has to be performed at every step which could be prohibitive
for large models if not implemented efficiently. We implement the Hessian-vector product
using the method described in Pearlmutter (1994).

Hyper-learning rate β. The hyper-learning rate is a hyper-parameter of RT-HPO.
What is the advantage of selecting the learning rate ηt automatically if we have another
hyper-parameter β to pick in (2)? As our experiments in Section 4 and the ones in Franceschi
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et al. (2017, 2018) show, the benefit of this formulation is that the hyper-learning-rate is
more stable and obtaining state-of-the-art performance does not require modifications to β.

First-order approximation for the training loss and the performance metric.
The authors in Baydin et al. (2018) propose a way to adapt the learning rate during training.
They are motivated by the observation that if the gradient of the past few iterations are
correlated with each other, then we can potentially increase the learning rate and hope to
make faster progress. Formally, in our notation, their hyper-gradient can be written as

∆ηt =
〈
∇`(wt−1, bt−1),∇`(wt, bt)

〉
. (6)

Note that the above expression is inexpensive to compute and we only need to store a copy
of the past gradient ∇`(wt−1, bt−1). It can also be easily seen that this is the one-step, first
order approximation of the gradient in (5). Another rationale for the above update rule is
that it approximately minimizes the expected training error. We will use this method as a
baseline named as “First-order (Train)”.

We can also construct an alternative hyper-gradient update rule inspired from First-order
(Train) and use the performance metric in place of the training loss by substituting ∇`(wt, bt)
in Eq. 6 with ∇E(wt, vt). The motivation for this update rule is that updating the learning
rate which results in minimization of the validation loss as well as the training loss. We call
this method “First-order (Val)”.

4. Experiments

This section provides experimental results to show that: (i) we can efficiently compute the
hyper-gradient and use it for adapting the learning rate and (ii) when everything else remains
constant, RT-HPO leads to improved performances as compared to the other methods. Our
implementation of RT-HPO, as yet, scales to medium-size convolutional neural networks.
Our results are therefore presented on MNIST (LeCun, 1998), CIFAR-10 and the CIFAR-100
datasets (Krizhevsky et al., 2014), where we show competitive accuracies.

Setup: We do not use dropout or regularization while training to reduce total number
of tunable parameters which can impact the final accuracy. We use vanilla SGD without
momentum as the inner optimizer for all experiments. We also consider a set of widely used
baselines: fixed learning rate along with an exponentially decaying learning rate scheduler,
BO technique leveraging SageMaker Automatic Model Tuning and AdaDelta with its default
parameters (as suggested in Zeiler (2012)). We perform experiments using (i) Multi-Layer
Perceptron (MLP) on MNIST: a three-layer perceptron with 512, 256 hidden nodes, 784
input neurons and 10 output neurons, (ii) LeNet (LeCun et al., 2001) on MNIST, (iii)
ResNet-18 (He et al., 2016) on CIFAR-10, and (iv) ResNet-18 on CIFAR-100.

A summary of all the results can be found in Table 1 showing the classification per-
formances with respect to quality and robustness of the classification model. RT-HPO
outperforms the First-order (Train) and First-order (Val) algorithm on CIFAR-10 and CIFAR-
100; all three algorithms perform almost equally on MNIST. Further, RT-HPO is most robust
to the choice of the η̄ while First-order (Val) is most robust to the choice of β. We found
RT-HPO to be stable in terms of both η̄ and β as long as the value of β is chosen to be
small. The accuracy obtained by RT-HPO is better than that of both First-order (Train)
and First-order (Val). In terms of running time, due to the Hessian-Vector products (HVPs),
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Fixed η Fixed β Top Time
MLP on MNIST (%) (%) (%) (min)
First-order (Train) 98.37 ± 0.05 98.19 ± 0.17 98.43 14

First-order (Val) 98.27 ± 0.24 98.23 ± 0.16 98.43 32

RT-HPO 98.42 ± 0.08 98.30 ± 0.01 98.49 14

Grid Search - 97.49 ± 1.60 98.67 -
AdaDelta - - 98.62 14

BO - - 98.55 140

LeNet on MNIST
First-order (Train) 99.06 ± 0.29 98.69 ± 0.89 99.32 12

First-order (Val) 99.22 ± 0.17 99.08 ± 0.17 99.38 30

RT-HPO 99.32 ± 0.04 99.24 ± 0.13 99.36 12

Grid Search - 98.97 ± 0.52 99.24 -
AdaDelta - - 99.38 12

BO - - 99.23 120

ResNet-18 on CIFAR-10
First-order (Train) 87.21 ± 3.99 86.15 ± 1.91 92.33 150

First-order (Val) 90.86 ± 1.11 88.96 ± 4.83 92.37 360

RT-HPO 89.23 ± 5.88 92.79 ± 0.36 93.04 1920

Grid Search - 89.92 ± 2.56 92.33 -
AdaDelta - - 92.46 150

BO - - 92.86 1500

ResNet-18 on CIFAR-100
First-order (Train) 61.79 ± 6.97 62.71 ± 0.32 70.47 150

First-order (Val) 67.84 ± 1.66 64.16 ± 5.43 69.60 360

RT-HPO 66.82 ± 4.73 71.55 ± 0.03 71.57 1920

Grid Search - 66.29 ± 5.48 71.06 -
AdaDelta - - 70.31 150

BO - - 70.5 1500

Table 1: Summary of the results: (i) average (and std) of the test accuracy when the best initial learning
rate η̄ is selected and changing the hyper-learning rate β (i.e. robustness with respect to β), (ii) the same with
the best β and changing η̄ (i.e. robustness with respect to η̄), (iii) the best result among all the combinations
of η̄ and β, (iv) the cost of a single training run in minutes. For BO, it refers to the total time of all training
runs as part of the BO process.

RT-HPO is significantly (12.8 times First-order (Train) and 5.3 times First-order (Val))
slower for deeper networks. We believe this gap can be made closer by sub-sampling the
HVP. Let us note that Bayesian HPO, when run for similar time as that of RT-HPO obtains
marginally worse accuracies.

5. Discussion

We demonstrated that gradient-based HPO techniques like RT-HPO can be made to work
and can even outperform current approaches. Extending gradient-based techniques to adapt
other hyper-parameters like momentum, weight decay as well as extend RT-HPO for other
optimizers like SGD With momentum or Adam is a promising direction. We believe these
techniques are a first-step towards completely automating the training process of deep neural
networks.
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