
7th ICML Workshop on Automated Machine Learning (2020)

Task-Agnostic Amortized Inference of
Gaussian Process Hyperparameters

Sulin Liu Xingyuan Sun Peter J. Ramadge Ryan P. Adams
sulinl,xs5,ramadge,rpa@princeton.edu

Princeton University

Abstract
Gaussian processes (GPs) are flexible priors for modeling functions. However, their success
depends on the kernel accurately reflecting the properties of the data. One of the appeals
of the GP framework is that the marginal likelihood of the kernel hyperparameters is
often available in closed form, enabling optimization and sampling procedures to fit these
hyperparameters to data. Unfortunately, point-wise evaluation of the marginal likelihood
is expensive due to the need to solve a linear system; searching or sampling the space
of hyperparameters thus often dominates the practical cost of using GPs. We introduce
an approach to the identification of kernel hyperparameters in GP regression and related
problems that sidesteps the need for costly marginal likelihoods. Our strategy is to “amortize”
inference over hyperparameters by training a single neural network, which consumes a set
of regression data and produces an estimate of the kernel function, useful across different
tasks. To accommodate the varying dimension and cardinality of different regression
problems, we use a hierarchical self-attention-based neural network that produces estimates
of the hyperparameters which are invariant to the order of the input data points and
data dimensions. We show that a single neural model trained on synthetic data is able to
generalize directly to several different real-world GP use cases. Our experiments demonstrate
that the estimated hyperparameters are comparable in quality to those from the conventional
model selection procedures, while being much faster to obtain, significantly accelerating
GP regression and its related applications such as Bayesian optimization and Bayesian
quadrature.

1. Introduction
Gaussian processes (GPs) are powerful tools for modeling distribution over functions. They
are highly flexible Bayesian nonparametric models, with the additional property that the
posterior is often available in closed form. GPs are used in a variety of machine learning
tasks, from regression and classification [31], to Bayesian optimization [38], to modeling
of dynamics [19]. The predictive performance of a Gaussian process, however, is highly
dependent on the specifics of the prior on functions, as determined by the associated positive
definite kernel function. To find a good prior, one needs to first come up with a family of kernel
functions that is capable of capturing the structure of the data. The kernel hyperparameters
must then be determined, usually by maximizing the log marginal likelihood (MLL), i.e.,
empirical Bayes [23]. The MLL maximization procedure is well-known to have two major
issues: costly evaluation (O(n3) complexity) of the log MLL in gradient calculation and bad
local maxima issue due to its non-concavity [30, 27]. To reduce the computation cost, most
efforts are devoted to reducing the size of the linear system involved without significantly
compromising the predictvie performance. This is usually done by intelligently selecting a
subset of the data [36, 42] or constructing a low-rank approximation of the covariance matrix
based on virtual “inducing” point [5, 29, 34, 37, 40, 14].
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Here, however, we take an entirely different approach and focus solely on the model
selection problem, without reference to linear systems at all. Instead, we amortize the Gaus-
sian process model selection problem by training a neural network to consume input/output
observations and emit an estimate of the hyperparameters that would otherwise arise from
maximizing the log marginal likelihood. This approach is inspired by amortized variational
inference approaches [18, 32, 13, 33], which similarly sidestep expensive optimization proce-
dures in favor of directly producing estimates. In the variational inference case, the neural
network produces posterior estimates of a set of unknown latent variables; here we produce
point estimates of the unknown hyperparameters.

Of course, as noted above, selection of the kernel family is just as important as deter-
mination of hyperparameters, and we view this as a crucial piece of the amortized model
selection puzzle. One approach to modeling the huge space of valid kernel functions would
be to represent the target kernel as a composition of different base kernels [7, 22, 39]. In
principle, various base kernels, composition rules, and associated hyperparameters could be
modeled as latent random variables, produced by a neural network architecture. However, we
have found this approach to be difficult due to the optimization challenge introduced by their
complicated intercorrelated structure. Thus, we instead focus on stationary kernels in the
spectral domain and directly learn the spectral density of the kernel function [43]. Turning
to the spectral domain provides us with a unified and compact continuous representation of
the space of stationary covariance functions.

There are two particularly salient challenges associated with training a single neural
network to produce effective hyperparameters for many different regression-type tasks: both
the amount of data and the dimensionality of the input can vary from problem to problem.
To address this, we develop a specialized hierarchical self-attention structure that consumes
datasets and produces spectral densities while being invariant to permutations of the data
and the dimensions. Thus, this single “meta-model” can be applied to different problems for
which a Gaussian process is applicable. The parameters of the network are trained using
gradients computed via reverse-mode automatic differentiation through the log marginal
likelihood of the Gaussian process, for randomly-generated synthetic data from the prior.
Then we directly apply the trained neural model to real-world datasets of varying size and
dimension in different GP applications. Even though the model is trained with only synthetic
data, experimental evidence indicates that the estimated hyperparameters are comparable in
quality to those from the conventional procedures while being ∼100 times faster to obtain.

2. Amortized GP Hyperparameter Inference
In this section, we introduce amortized hyperparameters inference for GP (AHGP), a method
that replaces the MLL maximization procedure with a direct estimate of the kernel hyperpa-
rameters through a massive-parametric function approximator, i.e., a neural network. An
introduction to GP hyperparameter inference can be found in Appendix A. When performing
Gaussian process regression, it is common to first identify a family of Gaussian process priors.
Here we focus on Gaussian process priors induced by stationary kernels which include many
widely-used kernels, e.g., exponentiated quadratic, rational quadratic, and periodic.
Spectral Modeling of Stationary Kernel Functions. In lieu of a compositional ap-
proach to the kernel function, we build a flexible approach around the duality between
stationary kernels and their spectral density, taking advantage of the well-known theorem by
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Figure 1: The top part of the figure gives an illustration of the computation graph in AHGP. The bottom part
describes our hierarchical attention neural net architecture.

Bochner (details can be found in Appendix B). The theorem states that all stationary kernel
functions, are uniquely described by their spectral densities in the frequency domain.

We take advantage of this correspondence and use a neural network to predict the
spectral density of the kernel function rather than the covariance function itself. Following
previous work [43, 44], we model the spectral density via a Gaussian mixture, leading to
interpretability and closed form evaluation of the kernel. Additionally, the fact that Gaussian
mixtures are dense in the space of probability distribution functions [35, 43] makes them
capable of approximating the spectral density of any stationary kernel function arbitrarily
well. Here we further assume that the kernel function has a product structure over different
dimensions and every dimension has its own mixture of Gaussians. The product kernel
structure is a common modeling choice in Gaussian process regression, and arises naturally
in many generic kernels such as the exponentiated quadratic. Additionally, it is common
to compose kernels via element-wise products, with each dimension’s functional properties
encoded in its corresponding kernel function [31, 11, 7, 44].
Formulation. We now formalize this problem of amortized hyperparameter inference in
a Gaussian process. We are interested in fitting many different regression functions of the
form f : RD → R, with varying values of D. For the l-th regression task T (l), a set of in-
put/output training data are observed and are given by D(l) := {(x(l)

i , y
(l)
i )}Nli=1 = {X(l),y(l)},

where y(l)i = fl(x
(l)
i ) + ε

(l)
i with x

(l)
i ∈ RDl and ε

(l)
i being i.i.d. zero-mean Gaussian noise.

Assume we are given L tasks, with each task randomly sampled i.i.d. from a distribution
over tasks, i.e., {T (l)}Ll=1

i.i.d.∼ p(T ). We further assume that for each task, the function
values are generated by some underlying Gaussian process with its own unique kernel hy-
perparameters. The spectral density of each task’s GP is modeled as a mixture of M
Gaussians over each dimension as discussed above, with weights, means and variances de-
noted as θ(l)d = {{w(l)

d,m}
M
m=1, {µ

(l)
d,m}

M
m=1, {σ2

(l)
d,m}Mm=1} for the d-th dimension in task l. For

compactness, we use θ(l) = {θ(l)d }
Dl
d=1 to denote the collective hyperparameters for task l.

The neural network, parameterized by φ, defines a function gφ from a dataset D(l) to
an estimate of its spectral density hyperparameters θ(l), i.e., θ(l) = gφ(D(l)). Through the
duality of spectral densities and stationary kernel functions, the spectral mixture product
(SMP) kernel [44] is given in closed form (see Appendix B). We can now train the neural
network to produce hyperparameters using a “dataset of datasets”,

{
D(l)

}L
l=1

. With the
closed form kernel function specified by its spectral density hyperparameters, the averaged
negative log marginal likelihood (see Appendix A Eqn (3)) is used as our training objective:
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L
(
φ,
{
D(l)

}L
l=1

)
= − 1

L

L∑
l=1

1

Nl
log p

(
y(l)

∣∣∣ X(l), θ(l)
)
, (1)

where θ(l) = gφ(D(l)) and Nl is the number of data points in the l-th dataset. Once the neural
network is trained, it can be used to estimate the kernel function that would be appropriate
for a new set of input/output data Dtest by simply doing a forward pass of the neural model.

3. Hierarchical Attention Network for GP Hyperparameter Learning
As described in the previous section, the neural network learns a function from a dataset D(l)

to spectral density parameters {θ(l)d }
Dl
d=1, determining the GP kernel function for task l. As in

other deep learning problems, the architecture of the neural network is critical; in particular,
the structure of the network must take advantage of available symmetries. In our case, for
general purpose inference of GP kernel hyperparameters, we require an architecture that is
versatile enough to accommodate datasets of varying input dimension and with different
number of data points. Furthermore, the model should be invariant to permutation of both
the data and input dimensions. In other words, for a given dataset D(l), neither shuffling the
order of the (exchangeable) data nor shuffling the order of the dimensions should change
the resulting estimate of the kernel function. Importantly, the regularization and parameter
sharing induced by enforcement of such invariances should enable the neural network to learn
better and faster, analogously to convolutional neural networks for images.
Architecture. We draw inspiration from multi-head self-attention mechanisms and propose
a hierarchical Transformer [41] type of neural network architecture for tackling the problem
of learning GP hyperparameters. A general Transformer model has multiple layers and each
layer consists of a multi-head self-attention sub-layer followed by a feed forward network with
residual connections and layer normalizations. It serves as an autoregressive encoder that
maps a set of input data to a set of output representations. In particular, the self-attention
sub-layers allow each input datum to attend to the representations of other data and produce
context-aware representations. Multiple layers of self-attention enable modeling of high-
order non-linear interactions between input representations. For details about multi-head
self-attention mechanisms, we refer readers to Vaswani et al. [41].

Briefly, our network architecture mainly consists of two hierarchically nested Transformer-
like blocks. A graphic illustration of the proposed architecture is presented in Fig. 1.
Local Transformer : The first transformer block, LocalTransformer, serves as an encoder of the
per-dimension local information about the observed function, e.g., length scale, smoothness,
periodicity, etc. It takes in a set of input/output data specific to the d-th dimension,
e.g., D(l)

d = {(x(l)
i,d, y

(l)
i )}Nli=1, and outputs a corresponding set of representations {h(l)

i,d}
Nl
i=1.

Aggregate Function: The outputs from LocalTransformer{h(l)
i,d}

Nl
i=1 are aggregated through an

AggregateFunction that assembles a single local dimension-specific summary representation
h
(l)
local,d for the d-th dimension.

Global Transformer : After the dimension-specific local representations {h(l)
local,d}

Dl
d=1 are

computed, they are fed into a second dimension-level Transformer block, GlobalTransformer,
where non-linear interactions between the dimensions are modeled through multiple layers
of multi-head self-attention. The final per-dimensional representations {h(l)

global,d}
Dl
d=1, which

serve as context-aware representations at a global (dimension) level, are further passed
through a MLP to produce the final spectral density hyperparameters {θ(l)d }

Dl
d=1.
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Versatility and permutation invariance. Self-attention enables the model to consume
a set of input/output data with arbitrary data cardinality and dimensionality, making it
possible to train a single neural model to predict GP kernel hyperparameters of different tasks
with varying data cardinality and dimensionality, as long as the inputs are real-valued. The
proposed model also possesses the following permutation equivariance/invariance properties.

Proposition 1 If AggregateFunction is permutation invariant, and weights of LocalTransformer
and MLP are shared across dimensions, then the proposed neural network is permutation
equivariant with respect to data dimensions and invariant with respect to data points.

4. Experimental Results
Baselines. We compare our method to the standard approach of maximizing the log marginal
likelihood with respect to hyperparameters. We also compare with the sparse variational
Gaussian processes method (SGPR) [40, 14], which uses inducing points to approximate
the full GP. The focus of the comparisons will be on the quality of the selected kernel
hyperparameters and the run time of the hyperparameter selection procedure.

The baselines are implemented with two popular GP packages: GPy [12] (implemented
for CPU) and GPyTorch [10] (implemented for GPU). The spectral mixture (SM) kernel
and spectral mixture product (SMP) kernel are used as the kernel functions. These give
rise to eight different baselines: GPy-SM, GPy-SM-Sp, GPy-SMP, GPy-SMP-Sp, GPT-SM,
GPT-SM-Sp, GPT-SMP, GPT-SMP-Sp, where “GPT” denotes “GPyTorch” and “Sp” denotes
“SGPR”. The GPyTorch baselines make use of batched conjugate gradient to invert the kernel
matrix for efficient approximate inference. We additionally implement a full GP baseline with
SMP kernel that uses Cholesky decomposition in PyTorch [28], and its MLL is optimized via
reverse-mode automatic differentiation. We will refer to this baseline as PyT-AD-SMP.
Training Setup. In our experiments, the training data are constructed by sampling multiple
sets of synthetic input/output data from a GP prior with a stationary kernel. Dimensions
vary from 2 to 15. More details about data generation are provided in Appendix E. A single
neural model is trained on the synthetic data using Adam [17] with a fixed learning rate,
and the same trained model is then used across all evaluations.
Regression benchmarks. We evaluate our method and the baselines on regression bench-
marks from the UCI collection [1] used in Hernández-Lobato and Adams [15] and Sun et al.
[39] following the same setup: the data are randomly split to 90% for training and 10%
for testing. This splitting process is repeated 10 times and the average test performance
is reported. Comparisons with CPU-based baselines are presented in Fig. 2 and Table 1
(Appendix E). We observe that AHGP has consistently lower run times than the baselines,
averaging ∼100 times faster. Nevertheless, the predictive performance of AHGP is compara-
ble to (and sometimes better than) the strongest baselines, which perform MLL optimization
without approximation. Notably, AHGP seems to perform slightly better on datasets with
fewer data points, such as Yacht. We believe this demonstrates the robustness of AHGP when
there is not enough data for MLL-opt based approaches to form reasonable point estimates.
The sparse variational GP methods are faster than the full GP methods in general, but with
lower performance on both test RMSE and test log-likelihood. Comparisons with GPU-based
methods are in Appendix E, where similar findings are obtained.
Bayesian optimization. Bayesian optimization [24] (BO) uses a GP as a surrogate model
when the objective function is expensive to evaluate. The method involves fitting the GP
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Figure 2: Comparison of AHGP against the CPU baselines on regression benchmarks. In (c), the numbers are the
differences of the corresponding method’s test RMSE with the best RMSE on the respective dataset. Note that for
Naval, the RMSEs are all very close to 0. (Only average test performance is shown here. Refer to Appendix E for
complete results with error bars.)

0 50 100 150 200
Iteration

0

2

4

M
in.

 Fu
nc

tio
n V

alu
e

SixHumpCamel (d=2)

0 50 100 150 200
Iteration

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

M
in.

 Fu
nc

tio
n V

alu
e

Hartmann3 (d=3)
GPy-SM
GPy-SM-Sp
PT-AD-SMP
AHGP (Ours)

0 50 100 150 200
Iteration

−200

−180

−160

−140

−120

−100

M
in.

 Fu
nc

tio
n V

alu
e

Stybtang5 (d=5)

0 50 100 150 200
Iteration

−350

−300

−250

−200

−150

−100

M
in.

 Fu
nc

tio
n V

alu
e

Stybtang10 (d=10)

SHC HM3 ST5 ST10
100

101

102

Ru
nti

me
 R

ati
o

GPy-SM
GPy-SM-Sp
PT-AD-SMP
AHGP (Ours)

Figure 3: BO performance comparisons. Left : Minimum function values found v.s. number of BO iterations. Shaded
region represents 0.5 standard deviation over 10 runs. Right : Runtime ratio over AHGP. (Only average is plotted
here, refer to Appendix E for mean and standard deviation.)

kernel hyperparameters and maximizing an acquisition function to select a candidate point
that is highly promising to achieve the function minima (maxima) under the model. Since
the method is iterative, MLL optimization needs to be conducted at every BO iteration to
update the GP. An amortized approach would greatly reduce the computation involved. We
pick the best performing baselines on the regression benchmarks (GPy-SM, GPy-SM-Sp,
PyT-AD-SMP) and compare them with AHGP. We use standard test functions for global
optimization [6] as the target functions for Bayesian optimization.

At the start of every BO iteration, the hyperparameters are randomly re-initialized for
all baselines. A sample of the experimental results is shown in Fig. 3. (Full results can be
found in Appendix E.) Again, AHGP is a substantial improvement in run-time. In terms of
minimum values found, AHGP is on par with the baselines on some functions and slightly
worse on functions with higher dimensionality. Of particular note—consistent with what was
seen on the regression benchmarks—AHGP has the greatest improvement in the beginning
when there are few observations available.

To ensure fairness to baseline fitting procedures, we also conducted experiments where
the hyperparameter selection in the BO inner loop was initialized using the best from the
previous iteration. As expected, this warm-starting results in decreased run times for the
baselines, although still slower than AHGP (in Appendix E). This warm-starting, however,
seems to compromise the hyperparameter selection—presumably due to local minima—and
damage the overall outer loop optimization.

5. Conclusions
We introduced amortized hyperparameters inference for Gaussian processes (AHGP). Our
proposed neural model is not only versatile to accommodate tasks of different size and dimen-
sionality but also permutation invariant of both data and dimensions. We experimentally
show that a single amortized inference model trained on synthetic data is able to directly
generalize to different real-world GP use cases. Our model is capable of producing hyperpa-
rameters that are comparable in quality to those from the conventional MLL maximization
approaches, while being on average ∼100 times faster.
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Appendix A. Gaussian Processes

In this section, we establish background concepts and notations necessary for the discussion
of the amortized hyperparameters inference approach described in Section 2.

A Gaussian process defines a distribution over functions f : X → R, and is specified by
its mean function µ(x) and positive-definite covariance function k(x,x′), where x,x′ ∈ X :

f(x) ∼ GP (µ(·), k (·, ·)) , µ(x) = E[f(x)], k
(
x,x′

)
= cov

(
f(x), f(x′)

)
(2)

For any finite set of points in X , X := {x1, . . . ,xN}, the corresponding function val-
ues f := (f(x1), · · · , f(xN )) follow a multivariate Gaussian distribution: f ∼ N (µ,KXX),
where µi = µ(xi) and (KXX)ij = k(xi,xj). For a training dataset D = {(xi, yi)}Ni=1, each yi
is commonly assumed to be generated by adding an i.i.d. zero-mean Gaussian noise to f(xi),
i.e., yi = f(xi) + εi, where εi ∼ N (0, σ2ε ). Denote y := [y1, · · · , yN ]> ∈ RN×1. For new data
input X̃ := {x̃1, . . . , x̃N ′} of size N ′, the Gaussianity of the prior and likelihoods make it
possible to compute the predictive distribution in closed form:

f̃ |X̃,D ∼N
(
µ̃,K

f̃

)
, µ̃ = K

X̃X

(
KXX + σ2ε I

)−1
y, K

f̃
= K

X̃X̃
−K

X̃X

(
KXX+σ2ε I

)−1
K

XX̃
,

where K
XX̃
∈ RN×N ′ with (K

XX̃
)
ij
= k(xi, x̃j).

A.1 Choice of kernel function

The choice of kernel function is crucial to Gaussian process generalization, as different kernel
functions impose various model assumptions, e.g., smoothness, periodicity, etc. (See Chapter
4 of Rasmussen and Williams [31] for an extensive discussion.) If the problem has a known
structure, one can sometimes choose a kernel to capture it. Otherwise, kernel learning must
be performed by defining an expressive space of kernel functions and selecting the best one
through optimization [43, 45, 39] or search [7, 22].

A.2 Hyperparameter inference.

Beyond the particular choice of kernel, it is also common for the covariance function to have
so-called hyperparameters θ that govern its specific structure, and the parameterized kernel
function is written as kθ(·, ·). Although a fully-Bayesian treatment is possible [27, 25, 8, 26],
the most common approach to determining hyperparameters is to use empirical Bayes and
maximize the log marginal likelihood (evidence) with respect to the hyperparameter θ, i.e.,
perform type II maximum likelihood [2, 23]. The log MLL for observed data {X,y} is given
by:

log p(y|X, θ) = −1

2
y>
(
KXX(θ) + σ2ε I

)−1
y − 1

2
log
∣∣KXX(θ) + σ2ε I

∣∣− N

2
log 2π , (3)
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where we write KXX(θ) to indicate the dependence of the Gram matrix on the hyperparam-
eters.

To solve the above optimization problem, quasi-Newton methods such as L-BFGS [21] or
nonlinear conjugate gradient [16, 9] are usually used. These iterative optimization methods
involve taking the gradient of the objective several times for each optimization step. As
the gradient of Eqn 3 scales as O(N3), this optimization becomes prohibitively expensive
on large-scale problems, dominating the computational cost of using GP. Moreover, the
non-concavity of the objective in Eqn 3 makes it difficult to ensure convergence to a good
maximum.

To address the scaling issue, a low-rank approximation to the kernel matrix is often used
either by subsampling the data or via virtual “inducing” points [36, 42, 5, 29, 34, 37, 40, 14].
These methods require inversion of a smaller matrix and reduce the computational complexity
to O(NM2) (M is the number of subsampled data or “inducing” points), at the cost of
a larger and often more challenging optimization problem alongside the potential loss of
important information from the dataset.

Appendix B. Spectral Density of Kernel Functions

We start by introducing Bochner’s Theorem stated below.

Theorem 2 (Bochner [3]) A complex-valued function k on Rd is the covariance function
of a weakly stationary mean square continuous complex valued random process on Rd if and
only if it can be represented as

k(τ) =

∫
Rd
e2πiω

>τdµ(ω), (4)

where µ is a positive finite measure, often known as the spectral measure of the random
process.

When µ is absolutely continuous with respect to the Lebesgue measure, its Radon–Nikodym
derivative (density) S(ω) is called the spectral density of the random process. The kernel
function k(·) and the spectral density S(·) are Fourier transform pairs. In other words,
Bochner’s Theorem establishes the correspondence between any stationary kernel and its
spectral density.

By resorting to the duality of spectral density and kernel function given by Bochner’s
Theorem, for each dimension d, if we assume its spectral density is described by aM mixtures
of Gaussians with means {µ(d),m}Mm=1 and variances {σ2(d),m}

M
m=1, we have its kernel function

in closed form [43, 44] given by,

kSMPθ(d)
(τ(d)) =

M∑
m=1

w(d),m exp
{
−2π2τ2(d)σ

2
(d),m

}
cos
(
2πτdµ(d),m

)
. (5)

where τ(d) is the d-th component of τ = x− x′ ∈ RD, i.e. the difference of two data points.
Taking the product of kernels for different dimensions, the spectral mixture product (SMP)
kernel [44] is given by:

kSMPθ (τ ) =
D∏
d=1

kSMPθ(d)

(
τ(d)
)
, (6)
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Appendix C. Proof of Proposition 1

We start by defining permutation equivariant and permutation invariant functions.

Definition 3 Let Sn be the set of all permutations of indices {1, 2, · · · , n}. A function
f : X n → Yn is permutation equivariant if and only if for any permutation π ∈ Sn,
f(πx) = πf(x).

Definition 4 Let Sn be the set of all permutations of indices {1, 2, · · · , n}. A function
f : X n → Y is permutation invariant if and only if for any permutation π ∈ Sn,
f(πx) = f(x).

Next, we start the proof.
Proof We assume our neural network takes in the l-th dataset D(l) as input. By definition of
the multi-head self-attention mechanism, it is obvious that a single multi-head self-attention
sublock is permutation equivariant. From [46] we know stacks of permutation equivariant
layers are still permutation equivariant. Therefore, for every dimension, the input/output
data {(x(l)

i,d, y
(l)
i )}Nli=1 are always mapped to the same corresponding {h(l)

i,d}
Nl
i=1 regardless of

their order. Further if AggregateFunction is permutation invariant, we have h(l)
local,d invariant

of the order of data points for each dimension.

As the LocalTransformer is sharing the same weights for all dimensions,{h(l)
local,d}

Dl
d=1

will remain equivariant with regards to permutation of dimensions. Next {h(l)
local,d}

Dl
d=1 are

passed through stacks of multi-head self-attention subblocks which is permutation equivariant,
therefore the final {h(l)

global,d}
Dl
d=1 are permutation equivariant. Again the weight sharing of the

final MLP ensures that the final predicted spectral density hyperparameters {θ(l)d }
Dl
d=1 are per-

mutation equivariant with regards to data dimensions. They are also permutation invariant
with regards to data points, as {h(l)

local,d}
Dl
d=1 are invariant of the order of input/output data.

Appendix D. Complexity analysis

For each multi-head self-attention layer, the computational complexity is O(h ·n2), where h is
the representation dimension and n is the size of the input set. Assuming that LocalTransformer
has l1 layers with representation dimension h1 and GlobalTransformer has l2 layers with
representation dimension h2, the complexity of our model is O(l1 · h1 · N2 + l2 · h2 · D2),
where N is the number of data points and D is the dimensionality. In comparison, exact
marginal likelihood optimization scales as O(r ·N3), where r denotes the number of gradient
evaluations during optimization. It is possible to further reduce the complexity of our model
to O(l1 · h1 ·m ·N + l2 · h2 ·m ·D) if we restrict the number of attentions to m by either
introducing sparse attentions [4] or inducing points [20], which we leave for future work.
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Appendix E. Experimental Details and Results

E.1 Synthetic Training Dataset Generation

In our experiments, our training dataset is constructed by sampling multiple sets of in-
put/output data from synthetically generated GPs with stationary kernel functions. For
each GP, its data dimensionality is sampled uniform randomly from 2∼15. To sample
flexible kernel functions, we randomly generate mixtures of Gaussians to represent its spectral
density. The weights of the Gaussian mixtures are drawn from Dirichlet distribution and the
lengthscales (i.e., 1/

√
2πσ(d),m’s) are sampled from a log-uniform distribution. The number

of mixtures is set to 10 and the concentration parameter of the Dirichlet distribution are set
to 1. The input of the data points {x(l)

i }
Nl
i=1 are generated from a Poisson point process within

the hypercube [−1, 1]Dl with average density equals to 30. The data output values {y(l)i }
Nl
i=1

are generated from priors of the GP with its specified kernel function. The observation noise
is i.i.d. randomly sampled from N (0, 0.01). We generate 10000 sets of input/output data to
be used as the whole dataset, of which we do a split with 50% used for training and the rest
for validation.

E.2 Training Details

Our model is trained with PyTorch using the Adam [17] optimizer with a fixed learning rate
and a batch size of 64. A description of our model architecture is provided in Table 4. We
also apply 0.1 dropout to self-attention and the MLPs. The number of Gaussian mixtures
in the spectral density prediction is fixed at 10. To validate the effectiveness of our neural
network model, we minimize the efforts of hyperparameter tuning during training. The only
hyperparameters we tuned are learning rate ({10−3, 10−4, 10−5, 10−6}) and number of layers
in LocalTransformer and GlobalTransformer (2∼8). The hyperparameters are tuned based
on performance on the validation set.

Embed each (x
(l)
i,d, y

(l)
i ) to 256 dim

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

AggregateFunction: Average pooling

(a) LocalTransformer architecture and AggregateFunction

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

MLP for predicting weights, means and variances (each with hidden dim [256, 128])

(b) GlobalTransformer architecture and the final MLP

Figure 4: Details of the neural network architecture.

Since spectral mixture kernel assume the variance of the kernel function is normalized,
we standardize the function values {y(l)i }

Nl
i=1. We also standardize the data input {x(l)

i }
Nl
i=1 as

a standard procedure. During training, we find the validation performance is most sensitive
to learning rate and increasing layers of the Transformers slightly helps. The final model
is trained for 200 epochs with batch size 64, learning rate 10−5 and 8 layers in both Local
and Global Transformer. The training is done on an NVIDIA GTX 1080 Ti GPU. All the
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evaluation experiments are run using one core of an Intel(R) Core(TM) i7-6850K CPU for
CPU runtime comparisons and an NVIDIA GTX 1080 Ti GPU for GPU runtime comparisons.

E.3 Regression Benchmarks

For SGPR methods, the number of inducing points is set to 10% of the number of training
data. The comparisons with the CPU-based baselines in terms of test log marginal likelihood
are presented in Table 1.

Dataset GPy-SM GPy-SM-Sp GPy-SMP GPy-SMP-Sp AHGP (Ours)

Boston -2.649±0.364 -3.527±1.086 -2.538±0.281 -2.939±0.642 -2.367±0.115
Concrete -2.656±0.637 -3.435±0.238 -2.690±0.574 -3.757±0.579 -3.460±1.334
Energy -1.059±0.019 -1.103±0.046 -1.079±0.028 -2.534±0.557 -0.837±0.215
Wine -0.427±0.058 -4.331±1.328 -0.410±0.053 -1.053±0.051 -0.321±0.075
Yacht -1.573±0.254 -1.526±0.108 -1.500±0.077 -1.979±0.742 -0.997±0.092
Kin8nm 1.119±0.044 0.655±0.177 1.020±0.054 0.748±0.198 0.192±0.039
Naval 6.157±0.267 5.433±1.063 6.211±0.011 3.643±0.164 5.393±0.102
PowPlant -2.591±0.115 -3.831±0.330 -2.475±0.060 -2.936±0.047 -3.112±0.151

Table 1: Test log-likelihood on regression benchmarks: CPU-based methods

The comparisons of AHGP with the GPU-based baselines are presented in Fig 5 and
Table 2. Results are similar to comparisons with the CPU-based baselines in the main section.
Note that GPyTorch baselines perform slightly worse than GPy baselines, since GPyTorch
uses conjugate gradient method to approximately solve for matrix inverse instead of doing
the Cholesky decomposition. In comparison, PyT-AD-SMP uses Cholesky decomposition
and generally achieves better performance than GPT-SMP.
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(b) GPU runtime ratio over AHGP

Boston
 n=506

Concrete
 n=1031

Energy
 n=768

Wine
 n=1599

Yacht
 n=308

Kin8nm
 n=2000

Naval
 n=2000

PowPlant
 n=2000

GPT-SM

GPT-SM-Sp

GPT-SMP

GPT-SMP-Sp

PyT-AD-SMP

AHGP (Ours)

0.43 2.85 0.01 0.06 0.22 0.01 0.00 1.58

1.86 4.12 0.53 0.08 2.14 0.03 0.00 1.49
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(c) Gap with best RMSE

Figure 5: Comparison of AHGP against the GPU-based baselines on regression benchmarks. In (c), the numbers
are the differences of the corresponding method’s test RMSE with the best RMSE on the respective dataset. Note
that for Naval, the RMSEs are all very close to 0 except PyT-AD-SMP which runs out of GPU memory.

E.4 Bayesian Optimization

We pick the best performing baselines on the regression benchmarks (GPy-SM, GPy-SM-Sp,
PyT-AD-SMP) and compare them with our method. The number of inducing points in
GPy-SM-Sp is set to 20. Standard test functions for global optimization [6] are used as the
target functions for Bayesian optimization. Five initial input points are randomly sampled
and function values at the points are evaluated; those input points with their function
values serve as the initial input/output data of GP. At the beginning of each BO iteration,
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Dataset GPT-SM GPT-SM-Sp PyT-AD-SMP GPT-SMP GPT-SMP-Sp AHGP (Ours)

Boston -2.692±0.442 -12.440±5.930 -2.757±0.416 -2.687±0.439 -11.390±5.270 -2.367±0.115
Concrete -3.030±0.640 -3.347±0.107 -3.132±1.262 -3.095±0.720 -3.285±0.078 -3.460±1.334
Energy -1.073±0.020 -1.269±0.064 -1.496±0.400 -1.068±0.023 -1.266±0.067 -0.837±0.215
Wine -0.517±0.079 -1.067±0.129 -0.306±0.064 -0.527±0.076 -1.028±0.115 -0.321±0.075
Yacht -1.492±0.105 -2.416±0.634 -1.030±0.770 -1.492±0.106 -2.477±1.071 -0.997±0.092
Kin8nm 0.921±0.086 0.819±0.042 1.108±0.047 0.917±0.090 0.854±0.045 0.192±0.039
Naval 5.892±0.028 5.253±0.215 Out of memory 5.933±0.017 5.372±0.113 5.393±0.102
PowPlant -2.923±0.120 -2.903±0.135 -2.540±0.153 -2.920±0.150 -2.834±0.078 -3.112±0.151

Table 2: Test log-likelihood on regression benchmarks: GPU-based methods

hyperparameters are randomly reinitialized for all the baselines and then optimized through
MLL optimization. The full results are shown in Fig. 6, 7a.

For comparison, we also implement another warmstart initialization strategy which sets
the initialization as the best hyperparameters from the previous BO iteration. The full
results are shown in Fig. 8, 7b.
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Figure 6: Bayesian optimization performance comparison: random initialization strategy. Shaded region indicates
0.5 standard deviations over 10 runs.

To evaluate our method on real-world Bayesian optimization problems, we additionally
applied our method to tuning learning and model hyperparameters of logistic regression
via BO. The goal is to find the training hyperparameters that achieves the highest test
accuracy when a fixed amount of time is used for training. We experiment on the task of
training logistic regression on MNIST data with stochastic gradient descent. The training
involves four hyperparameters: learning rate, `2 regularization parameter, `1 regularization
parameter and mini-batch size. We present the results in Fig 9. AHGP achieves comparable
test accuracy with the strongest baselines (GPy-SM, PyT-AD-SMP) while being much faster.
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(a) Random initialization strategy.
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(b) Warmstart initialization strategy.

Figure 7: Runtime on Bayesian optimization tasks.
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Figure 8: Bayesian optimization performance comparison: warmstart initialization strategy. Shaded region indicates
0.5 standard deviations over 10 runs.

The SGPR baseline (GPy-SM-Sp), however, has a lower test accuracy and much longer
runtime.

Method Runtime(s)

GPy-SM 195.90 ± 99.81
GPy-SM-Sp 1067.70±41.40

PyT-AD-SMP 23.85±0.45
AHGP(Ours) 1.23±0.06
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(b) Test accuracy performance

Figure 9: Performance and runtime of BO for training logistic regression on MNIST.
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